1,573 research outputs found

    Comparing Strategies to Prevent Stroke and Ischemic Heart Disease in the Tunisian Population: Markov Modeling Approach Using a Comprehensive Sensitivity Analysis Algorithm.

    Get PDF
    Background. Mathematical models offer the potential to analyze and compare the effectiveness of very different interventions to prevent future cardiovascular disease. We developed a comprehensive Markov model to assess the impact of three interventions to reduce ischemic heart diseases (IHD) and stroke deaths: (i) improved medical treatments in acute phase, (ii) secondary prevention by increasing the uptake of statins, (iii) primary prevention using health promotion to reduce dietary salt consumption. Methods. We developed and validated a Markov model for the Tunisian population aged 35–94 years old over a 20-year time horizon. We compared the impact of specific treatments for stroke, lifestyle, and primary prevention on both IHD and stroke deaths. We then undertook extensive sensitivity analyses using both a probabilistic multivariate approach and simple linear regression (metamodeling). Results. The model forecast a dramatic mortality rise, with 111,134 IHD and stroke deaths (95% CI 106567 to 115048) predicted in 2025 in Tunisia. The salt reduction offered the potentially most powerful preventive intervention that might reduce IHD and stroke deaths by 27% (−30240 [−30580 to −29900]) compared with 1% for medical strategies and 3% for secondary prevention. The metamodeling highlighted that the initial development of a minor stroke substantially increased the subsequent probability of a fatal stroke or IHD death. Conclusions. The primary prevention of cardiovascular disease via a reduction in dietary salt consumption appeared much more effective than secondary or tertiary prevention approaches. Our simple but comprehensive model offers a potentially attractive methodological approach that might now be extended and replicated in other contexts and populations

    Phenotypes of non-alcoholic fatty liver disease (NAFLD) and all-cause mortality: Unsupervised machine learning analysis of NHANES III

    Get PDF
    Objectives: Non-alcoholic fatty liver disease (NAFLD) is a non-communicable disease with a rising prevalence worldwide and with large burden for patients and health systems. To date, the presence of unique phenotypes in patients with NAFLD has not been studied, and their identification could inform precision medicine and public health with pragmatic implications in personalised management and care for patients with NAFLD. Design: Cross-sectional and prospective (up to 31 December 2019) analysis of National Health and Nutrition Examination Survey III (1988–1994). Primary and secondary outcomes measures: NAFLD diagnosis was based on liver ultrasound. The following predictors informed an unsupervised machine learning algorithm (k-means): body mass index, waist circumference, systolic blood pressure (SBP), plasma glucose, total cholesterol, triglycerides, liver enzymes alanine aminotransferase, aspartate aminotransferase and gamma glutamyl transferase. We summarised (means) and compared the predictors across clusters. We used Cox proportional hazard models to quantify the all-cause mortality risk associated with each cluster. Results: 1652 patients with NAFLD (mean age 47.2 years and 51.5% women) were grouped into 3 clusters: anthro-SBP-glucose (6.36%; highest levels of anthropometrics, SBP and glucose), lipid-liver (10.35%; highest levels of lipid and liver enzymes) and average (83.29%; predictors at average levels). Compared with the average phenotype, the anthro-SBP-glucose phenotype had higher all-cause mortality risk (aHR=2.88; 95% CI: 2.26 to 3.67); the lipid-liver phenotype was not associated with higher all-cause mortality risk (aHR=1.11; 95% CI: 0.86 to 1.42). Conclusions: There is heterogeneity in patients with NAFLD, whom can be divided into three phenotypes with different mortality risk. These phenotypes could guide specific interventions and management plans, thus advancing precision medicine and public health for patients with NAFLD

    Forecasted trends in disability and life expectancy in England and Wales up to 2025: a modelling study

    Get PDF
    Background Reliable estimation of future trends in life expectancy and the burden of disability is crucial for ageing societies. Previous forecasts have not considered the potential impact of trends in disease incidence. The present prediction model combines population trends in cardiovascular disease, dementia, disability, and mortality to forecast trends in life expectancy and the burden of disability in England and Wales up to 2025. Methods We developed and validated the IMPACT-Better Ageing Model—a probabilistic model that tracks the population aged 35–100 years through ten health states characterised by the presence or absence of cardiovascular disease, dementia, disability (difficulty with one or more activities of daily living) or death up to 2025, by use of evidence-based age-specific, sex-specific, and year-specific transition probabilities. As shown in the English Longitudinal Study of Ageing, we projected continuing declines in dementia incidence (2·7% per annum), cardiovascular incidence, and mortality. The model estimates disability prevalence and disabled and disability-free life expectancy by year. Findings Between 2015 and 2025, the number of people aged 65 years and older will increase by 19·4% (95% uncertainty interval [UI] 17·7–20·9), from 10·4 million (10·37–10·41 million) to 12·4 million (12·23–12·57 million). The number living with disability will increase by 25·0% (95% UI 21·3–28·2), from 2·25 million (2·24–2·27 million) to 2·81 million (2·72–2·89 million). The age-standardised prevalence of disability among this population will remain constant, at 21·7% (95% UI 21·5–21·8) in 2015 and 21·6% (21·3–21·8) in 2025. Total life expectancy at age 65 years will increase by 1·7 years (95% UI 0·1–3·6), from 20·1 years (19·9–20·3) to 21·8 years (20·2–23·6). Disability-free life expectancy at age 65 years will increase by 1·0 years (95% UI 0·1–1·9), from 15·4 years (15·3–15·5) to 16·4 years (15·5–17·3). However, life expectancy with disability will increase more in relative terms, with an increase of roughly 15% from 2015 (4·7 years, 95% UI 4·6–4·8) to 2025 (5·4 years, 4·7–6·4). Interpretation The number of older people with care needs will expand by 25% by 2025, mainly reflecting population ageing rather than an increase in prevalence of disability. Lifespans will increase further in the next decade, but a quarter of life expectancy at age 65 years will involve disability. Funding British Heart Foundation

    Modelling Future Coronary Heart Disease Mortality to 2030 in the British Isles.

    Get PDF
    OBJECTIVE: Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland. METHODS: CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted. RESULTS: Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses. CONCLUSIONS: Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity

    Predicting potential distribution and identifying priority areas for conservation of the Yellow-tailed Woolly Monkey (Lagothrix flavicauda) in Peru

    Get PDF
    Species distribution models (SDMs) provide conservationist with spatial distributions estimations of priority species. Lagothrix flavicauda (Humboldt, 1812), commonly known as the Yellow-tailed Woolly Monkey, is one of the largest primates in the New World. This species is endemic to the montane forests of northern Peru, in the departments of Amazonas, San Martín, Huánuco, Junín, La Libertad, and Loreto at elevation from1,000 to 2,800 m. It is classified as “Critically Endangered” (CR) by the International Union for Conservation of Nature (IUCN) as well as by Peruvian legislation. Furthermore, it is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Research on precise estimates of its potential distribution are scare. Therefore, in this study we modeled the potential distribution area of this species in Peru, the model was generated using the MaxEnt algorithm, along with 80 georeferenced occurrence records and 28 environmental variables. The total distribution (high, moderate, and low) for L. flavicauda is 29,383.3 km2, having 3,480.7 km2 as high potential distribution. In effect, 22.64 % (6,648.49 km2) of the total distribution area of L. flavicauda is found within Natural Protected Areas (NPAs), with the following categories representing the largest areas of distribution: Protected Forests (1,620.41 km2), Regional Conservation Areas (1,976.79 km2), and Private Conservation Areas (1,166.55 km2). After comparing the predicted distribution with the current NPAs system, we identified new priority areas for the conservation of the species. We, therefore, believe that this study will contribute significantly to the conservation of L. flavicauda in Peru

    Explaining the decline in coronary heart disease mortality rates in Japan: Contributions of changes in risk factors and evidence-based treatments between 1980 and 2012

    Get PDF
    Background We aimed to quantify contributions of changes in risks and uptake of evidence-based treatment to coronary heart disease (CHD) mortality trends in Japan between 1980 and 2012. Methods We conducted a modelling study for the general population of Japan aged 35 to 84 years using the validated IMPACT model incorporating data sources like Vital Statistics. The main outcome was difference in the number of observed and expected CHD deaths in 2012. Results From 1980 to 2012, age-adjusted CHD mortality rates in Japan fell by 61%, resulting in 75,700 fewer CHD deaths in 2012 than if the age and sex-specific mortality rates had remained unchanged. Approximately 56% (95% uncertainty interval [UI]: 54–59%) of the CHD mortality decrease, corresponding to 42,300 (40,900–44,700) fewer CHD deaths, was attributable to medical and surgical treatments. Approximately 35% (28–41%) of the mortality fall corresponding to 26,300 (21,200–31,000) fewer CHD deaths, was attributable to risk factor changes in the population, 24% (20–29%) corresponding to 18,400 (15,100–21,900) fewer and 11% (8–14%) corresponding to 8400 (60,500–10,600) fewer from decreased systolic blood pressure (8.87 mm Hg) and smoking prevalence (14.0%). However, increased levels of cholesterol (0.28 mmol/L), body mass index (BMI) (0.68 kg/m2), and diabetes prevalence (1.6%) attenuated the decrease in mortality by 2% (1–3%), 3% (2–3%), and 4% (1–6%), respectively. Conclusions Japan should continue their control policies for blood pressure and tobacco, and build a strategy to control BMI, diabetes, and cholesterol levels to prevent further CHD deaths
    corecore